DLVL14 (F17) - Characteristic & Design Values

Product Name

DLVL-14 (F17)

Standards and Certification

The Dindas range of LVL Engineered Wood Products (EWP) is sourced from world leading sustainable manufacturers both internationally and locally. These manufacturers comply to not only the required AS/NZS standards, but also the globally recognised standard bodies of the APA and ASTM.

LVL from Dindas Australia currently meet or exceed the NCC Material Compliance requirements.

Manufacture

AS/NZS4357.2 Series of Standards

Quality Assurance - Certification Bodies

JAS-ANZ, Sai-Global, APA

Durability

Class 4

Multi-tooth Plate Design

Refer Nailplate Manufacturer

Sizes

290x35, 90x45, 120x45, 140x45, 190x45, 240x45, 290x45

Veneer Fibre

Manufacturer dependant but may contain the following, Spruce, Maritime Pine, Radiata Pine, Doug-Fir, Birch

Moisture Content

8 – 15% (at time of despatch from the manufacturer)

Adhesive

Phenolic to AS2754.1

Bond

Type A to AS2098.2

φ Factors - Structural LVL - AS/NZS 4357.0

0.95 0.9 0.8

Treatment options

UT H2S H2 H3

* For complete treatment confidence and compliance, Dindas only recommends the use LOSP treatment methods for EWP products

Surface Finish

Unsanded faces, sawn and arrised edges

Dindas LVL Characteristic Values for Design Limit States		
f' _b	Bending strength ¹	52.2MPa
f' _t	Tension strength - parallel to grain ²	30.4MPa
f' _{tp}	Tension strength - perpendicular to grain	0.5MPa
f'c	Compression strength - parallel to grain	39МРа
f' _{cp}	Compression strength - perpendicular to grain	-
f'p	Bearing strength - perpendicular to grain	10MPa
f' _l	Bearing strength - parallel to grain	30MPa
f's	Shear strength	4.5MPa
f' _{sj}	Shear at joints	4.2MPa
MOE	Modulus of Elasticity	14,000MPa
MOR	Modulus of Rigidity	700MPa
ρ	Density (approximate)	590 - 600kg/m ³
JD	Joint Group for connector design (nails, screws & bolts)	JD4
SD	Strength Group	SD5

NOTES:

- 1. For beams greater than 95mm depth, the characteristic values are obtained by multiplying the value in this Table by $(95/d)^{0.167}$, where d is the depth of the section.
- 2. For tension members with cross-sectional dimension greater than 150mm, the characteristic values are obtained by multiplying the value in this Table by $(150/d)^{0.167}$, where d is the width or largest dimension of the cross-section.
- Tapered and notched beam is allowable but requires certifications and/or design checks by engineer.
- 4. Notches, cuts and holes in beams, bearers, joists and rafter members may have penetration holes and notches performed in accordance with AS1684.2 Clause 4.1.6 & Figure 4.1. The cutting, notching & drilling of components within structures that do NOT meet this criteria is outside the scope of this document and should be referred to an experienced timber engineer for design checks & certification.